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We study the influence of geometric restrictions on vapour/liquid coexistence properties and
critical data of square-well fluids. Starting with three-dimensional bulk systems, we model
the confinement by slit-like pores with decreasing slit widths arriving finally at planar
(two-dimensional) fluid layers. For both bulk and confined fluids, we use a uniform ap-
proach performing series of canonical ensemble Monte Carlo simulations with Widom-like
(virtual) particle insertions to estimate chemical potential versus density isotherms. By esti-
mating the corresponding vapour/liquid coexistence densities using a Maxwell-like equal
area rule for the subcritical chemical potential isotherms, we are able to study the influence
of the confinement not only on chemical potentials but also on the coexistence properties.
Critical point data are calculated from the coexistence densities by means of scaling rela-
tions. In particular, we study the change of the critical temperature and critical density vary-
ing the slit width and including the two- and three-dimensional bulk fluids as limiting
cases. While the difference between the bulk and the slit critical temperature is found to de-
cay exponentially with an exponent reciprocal to a linear function in the slit width, no
comparable simple relation describing the influence of the confinement on the critical den-
sity is found.
Keywords: Square-well potential; Chemical potential; Phase equilibrium; Monte Carlo simu-
lation; Critical point.

The study of the influence of geometric restrictions on the phase equilib-
rium properties of basic fluid models by statistical mechanical and simula-
tion methods provides important contributions to a molecular-based
understanding of surface and interfacial phenomena, such as adsorption
and capillary condensation of fluids interacting with biologically active sur-
faces (membranes), and fluids confined in microporous media (zeolites).
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Inhomogeneous fluids have been extensively studied during the last de-
cades by diverse integral equations, perturbation theory, and computer sim-
ulation methods (for comprehensive reviews of recent work on confined
fluids, see e.g. Evans1 and Gelb et al.2).

Recently, we introduced a method to study phase equilibria and critical
properties of fluids that combines canonical Monte Carlo (MC) simulations
of chemical potentials by particle insertion methods with the thermody-
namic integration of the simulated subcritical chemical potential versus
density isotherms by means of a Maxwell-like equal area rule3. This ap-
proach is conceptually simple and requires only the implementation of
Widom-like (virtual) particle insertion in existing canonical simulation
codes. It provides an alternative route to phase equilibria simulations in the
grand canonical ensemble and to Gibbs ensemble simulations.

We proved the ability of this approach to estimate reliable chemical po-
tential isotherms and phase equilibrium properties for bulk and confined
square-well fluids3, and we discussed to what extent finite size effects affect
the results4. This approach was also applied to calculate phase equilibria of
primitive water models, where hydrogen bonding is described by square-
well interactions5,6.

Based on this approach, in this paper we study systematically the influ-
ence of geometrical restrictions on phase coexistence properties and critical
properties of square-well fluids.

We study the square-well fluid mainly for two reasons:
1. It is one of the simplest molecular fluid models that is able to represent

the realistic fluid phase equilibria of real simple liquids.
2. It is a basic intermolecular potential, which is involved in molecular

models of several classes of more complex molecular liquids, such as poly-
mers7 or aqueous liquids8.

While the bulk properties of square-well fluids are well understood (for a
recent summary of phase equilibrium properties, see ref.9), the knowledge
of fluid phase equilibria of square-well fluids in simple confinements is
surprisingly poor. Particularly, for fluids confined in hard slit-like pores –
including planar monolayers – only few computer simulation data are
available3,4,10.

In order to model the increasing influence of the confinement on the
bulk properties, we start with a three-dimensional bulk system and model
the confinement by a sequence of slit-like pores with decreasing slit width,
arriving finally at a planar (two-dimensional) fluid monolayer. Particularly,
we study the shift of the critical temperature under confinement.
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The paper is organized as follows. In the second section we describe the
fluid models and the methodology used, including some technical details.
In the third section we present our results for phase equilibria of bulk and
confined square-well systems, such as coexistence densities and critical
data. This is followed by a discussion of the critical point shift and compari-
son of our results with existing literature results. Finally, as a summary of
our studies, we draw some general conclusions concerning the confinement
influence on phase equilibria and critical properties.

SYSTEMS UNDER CONSIDERATION AND METHODS USED

In this paper we consider a square-well fluid with the intermolecular poten-
tial model described by
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where σ is the diameter of the particles and ε and λ describe the depth and
width of the potential well, respectively. Throughout the paper we set λ =
1.5 and use reduced units

r r u u T kT* / * / * /= = =σ ε ε (2)

for distance, energy, and temperature, respectively. We study both normal
three-dimensional bulk square-well fluids and geometrically restricted
fluids confined to slit-like pores with diverse widths L reaching from L =
2.5σ to 10σ, and we include as limiting case L = 1σ, i.e., planar layers
(two-dimensional arrangements) of square-well particles. We perform stan-
dard canonical MC simulation11,12 using for the bulk fluid the usual cubic
simulation cell with periodic boundary conditions in three dimensions
(x, y, z) in space. For the confined fluid a simulation box is used of cross-
sectional area A with lengths l l lx y= ≡ in the x- and y-directions, and of
height L in z-direction corresponding to the wall separation distance of the
slit. In the x- and y-directions, periodic boundary conditions are applied.
We generate the corresponding Markov chains of configurations by per-
forming random trial displacements of the particles, and we measure the
chemical potential by inserting (virtually) test particles in the simulated
configurations. We applied the standard Widom test particle method13. The
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efficiency of the method suffices for our calculations, because the densities
in the gas/liquid transition range of interest are not extremely high. For re-
cent variants of insertion methods and discussion of the efficiency prob-
lem, see, e.g.5,6,14–16.

According to Widom13,17, the excess chemical potential over the ideal gas
value for both homogeneous and inhomogeneous fluids with an inter-
molecular potential UN(

r
r N ) may be written in the form
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models the hard walls of the confining slit of width L, i.e., the centers of
the particles can freely move in a slit of width L – σ.

The canonical MC average 〈exp[–β∆WN+1,N]〉N of the difference of the
Boltzmann factors between systems with N and N + 1 particles in Eq. (3) is
measured by virtual insertions of test particles in the N-particle system at
random positions in the usual way12. The total chemical potential of the
fluid is the sum of the ideal gas contribution and the excess chemical po-
tential (3) given by

βµ ρσ βµ= +ln( )3 ex (5)

where ρ = N/V is the number density of the fluid.
Typically the Markov chains generated at subcritical temperatures consist

of 106–108 MC translation moves per particle. The same number of virtual
particle insertion attempts are performed to measure the chemical poten-
tial. The longest chains are required in the density range between the equi-
librium vapour and liquid densities, where van der Waals-like loops in the
chemical potential isotherms occur.

The relative error of the simulated chemical potentials, found by means
of the block average method18, is of the order of (1–3) × 10–3. More techni-
cal details about the chemical potential simulations can be found in our
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previous paper4, which discusses in detail also the influence of the system
size on the results.

In order to calculate the coexistence densities, we use smoothed chemical
potential µ versus density ρ isotherms, obtained by fitting the simulation
results to analytical polynomials of the form

( )βµ ρσ=
−

=
∑bi

i

i

k
3 2

0

(6)

with adjustable parameters bi and k = 11. The coexistence densities we ob-
tain from the smoothed isotherms by means of a Maxwell-like equal-area
integration, by numerically implementing the condition of equal chemical
potentials of the coexisting phases, in the same way as discussed in our pre-
vious papers3,5. In order to obtain the critical temperature Tc

* and the criti-
cal density ρc, we use well-known scaling relations, which are valid in the
vicinity of the critical point. We use a nonlinear regression procedure to fit
the coexistence densities to the scaling expression

ρ ρ β
l /

* * * *( / ) . ( / ) ;v = + − ± − <c c c cC T T B T T T T2 01 0 5 1 (7)

based on a Wegner expansion19, where – following the common practice –
higher order terms were neglected20,21. The constants C2, B0 and the critical
exponent β are treated as adjustable parameters.

PHASE EQUILIBRIA OF BULK AND CONFINED SQUARE-WELL SYSTEMS

Vapour/Liquid Coexistence Properties

As discussed above, the first step in our methodology to estimate coexis-
tence properties is to simulate µ versus ρ isotherms by means of canonical
MC with (virtual) test particle insertions in the subcritical temperature
range for both the bulk and confined square-well fluids. For the purposes of
this paper, we have simulated new µ(ρ) isotherms for fluids confined to
slit-like pores with wall separation distances L = {2.5σ, 6.0σ, 10.0σ} and cor-
responding particle numbers of N = {392, 500, 567}. We have also studied
a set of smaller systems for the same slit widths with particle numbers N =
{162, 256, 343} to explore system size effects. Additionally, we have used
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existing simulation data for bulk fluids and slits with width L = 4σ and pla-
nar monolayers (L = 1σ), reported in our previous papers3,4.

Figure 1 presents two typical subcritical isotherms, showing one isotherm
for the smallest slit (L = 2.5σ, T* = 0.75, N = 392) and one for the widest slit
(L = 10.0σ, T* = 1.05, N = 567), including both the rough simulation data
and the smoothed curves. The van der Waals-like loops connecting the sta-
ble equilibrium vapour phase with the stable equilibrium liquid phase are
evident. For comparison, we show for both slit widths the same isotherms
simulated with smaller numbers of particles, i.e., in the case of L = 2.5σ
with N = 162 and in the case of L = 10.0σ with N = 343. We observe a sig-
nificant number dependence of the chemical potentials in the loop range
(i.e., a smaller loop for the larger system), but nearly no number depend-
ence in the stable gaseous and liquid density ranges. This is in agreement
with general considerations22, and results for Lennard–Jones systems23,24,
and our recent systematic study of the particle number dependence of µ(ρ)
loops of square-well fluids4 where, with increasing number of particles, in
general a shrinking of the loops is observed toward a horizontal line that
connects the stable gaseous density range with the stable liquid range rep-
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FIG. 1
Selected chemical potential versus density isotherms for the square-well fluid confined to hard
planar slits. Upper curves: L = 10σ, T* = 1.05; ● simulations of the large system with N = 567,
× simulations of the small system with N = 343. Lower curves: L = 2.5σ, T* = 0.75; ● simula-
tions of the large system with N = 392, × simulations of the small system with N = 162. Full
lines are numerical fits to Eq. (6)



resenting the vapour/liquid coexistence chemical potential of an infinite
system.

The calculation of the coexistence densities and chemical potentials is
straightforward by numerically integrating the simulated subcritical µ(ρ)
isotherms according to the Maxwell-like equal-area construction discussed
in the preceding section. Recently, we have calculated with this methodol-
ogy coexistence data for the bulk square-well fluid4 that we found to be in
good overall agreement with the best-known literature data of del Rio et al.9.
In the same paper we also estimated coexistence properties of planar mono-
layers, and we showed the consistency of the data with Gibbs ensemble sim-
ulations.

Table I shows the vapour/liquid coexistence densities and chemical
potentials calculated from the above mentioned new chemical potential
simulation data of confined fluids with wall separation distances of L =
{2.5σ, 6.0σ, 10.0σ}. Additionally, in Table I there are shown coexistence data
of the confined fluid with wall separation distance L = 4σ, recalculated from
existing chemical potential data3 using a polynomial fit of type Eq. (6).

Accounting for the observed significant particle number dependence of
the subcritical µ(ρ) loops, we have estimated also the vapour/liquid coexis-
tence densities for a set of slit width L = {2.5σ, 6.0σ, 10.0σ} from the simu-
lated isotherms with smaller numbers of particles N = {162, 256, 343}. We
found, in contrast to the significantly changing µ(ρ) loops, the differences
in the estimated vapour/liquid coexistence densities and chemical poten-
tials between the larger and the smaller system size studied, to be typically
smaller than the expected numerical uncertainty of the data. This is in
agreement with our general findings4 that finite size effects on fluid phase
equilibria of square-well fluids are usually weak, and particle numbers of
several hundreds to about one thousand particles suffice to calculate accu-
rately vapour/liquid equilibrium densities and the corresponding coexis-
tence chemical potentials.

Critical Point Properties

In order to calculate critical point properties of bulk and confined square-
well fluids, we use both our new phase coexistence data of Table I and our
recent data for bulk fluids and monolayers4. We exploit the scaling ap-
proach described in the last section, locating the critical point by nonlinear
regression of the coexistence densities versus temperature data to the scal-
ing ansatz (7), which describes the properties of the vapour/liquid densities
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TABLE I
Vapour/liquid coexistence densities and chemical potentials for the square-well fluid con-
fined in hard planar slits of different slit widths L. The precision of the data is estimated by
comparing the results of Maxwell integrations with polynomials (6) of different order and
found to be typically 3–5% for the vapour density, and 1% for the liquid density, and 0.5%
for the coexistence chemical potentials, respectively

L, σ N T* ρvσ3 ρlσ
3 µCO/kT

2.5 392 0.7250 0.0150 0.537 –4.032

0.750 0.0198 0.523 –3.834

0.7750 0.0270 0.508 –3.652

0.8000 0.0376 0.492 –3.485

0.8250 0.0517 0.472 –3.327

0.8500 0.0745 0.442 –3.185

4.0 a 0.80 0.0121 0.522 –4.381

a 0.90 0.0302 0.462 –3.727

a 0.95 0.0481 0.430 –3.464

a 1.00 0.0827 0.369 –3.241

6.0 500 0.975 0.0354 0.446 –3.667

1.000 0.0431 0.430 –3.545

1.025 0.0545 0.411 –3.430

1.050 0.0688 0.389 –3.325

1.075 0.0906 0.360 –3.227

10.0 567 1.0500 0.0483 0.423 –3.493

1.0750 0.0593 0.405 –3.387

1.1000 0.0721 0.384 –3.288

1.1250 0.0889 0.357 –3.195

1.1500 0.116 0.324 –3.107

a Results based on µ(ρ) isotherms given in ref.3 smoothed by improved polynomial fits.



in the vicinity of the critical point in terms of temperature difference to the
critical point.

In Fig. 2 we demonstrate the influence of geometrical restrictions on the
phase equilbria, showing both the temperature–density vapour/liquid
phase diagrams and the corresponding critical points, calculated along
these lines. Starting with the free bulk fluid, we show the increasing influ-
ence of the confinements by plotting the results for fluids confined to slits
with decreasing width L = {10σ, 6σ, 4σ, 2.5σ, 1σ}, which includes the limit-
ing case of planar monolayers.

Analyzing the coexistence densities, we observe that the confinement in-
fluence on the vapour phase is only weak, i.e., the density range of the
vapour phase remains close to that of the bulk fluid with increasing geo-
metrical restrictions for all confined systems studied, including the planar
monolayer. In contrast to the vapour phase, the density of the liquid phase
shows significant confinement effects. For wide slits in general the liquid
range is shifted to lower densities, but narrowing the slit width towards the
limit of monolayers, the liquid density range increases again and ap-
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FIG. 2
Comparison of temperature–density vapour/liquid coexistence curves between the three-
dimensional square-well fluid, and fluids confined in hard planar slits of slit widths L =
{2.5σ, 4.0σ, 6.0σ, 10σ}, and planar two-dimensional layers (L = 1.0σ). × Simulation and
Maxwell integration; – – – scaling expression (7) adjusted to the coexistence densities; ● criti-
cal points from scaling expression (7); + literature data for coexistence densities of bulk
square-well fluid9; × literature data for critical point of bulk square-well fluid9; ▲ independent
Gibbs ensemble simulations for L = 4σ (ref.3) and L = 1σ (ref.4)



proaches, in the (two-dimensional) layer limit, the bulk liquid density
range. The phase diagram of the layer looks quite similar to the bulk phase
diagram, which is consistent with the interpretation of the monolayer as a
free two-dimensional bulk fluid.

Some coexistence densities for square-well fluids in slit-like pores with
widths between L = 4σ and 16σ have been recently obtained by Shing and
Kwak10 using grand canonical MC. They show a figure with a temperature–
density vapour/liquid phase diagram. Although they do not give explicitly
numerical values, they report good mutual agreement of our previous re-
sults for L = 4σ (ref.3) with their grand canonical results. The phase diagram
shown in ref.10 is found to be consistent with the above discussed general
confinement effects on the phase coexistence densities. Particularly, the
observed significant lowering of the liquid phase density is confirmed by
these data and found to be valid for wider slits, too.
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TABLE II
Critical temperatures and densities and (effective) critical exponent β of the square-well fluid
in the bulk and confined to hard planar slits of different widths L including the limiting
case of planar two-dimensional layers (L = 1) calculated by the use of scaling relation (7).
The uncertainties of the results were estimated by sensitivity analysis of Eq. (7) in the same
way as in ref.3 The last digit error is given in parenthesis

L, σ N TC ρcσ
3 β

∞ (bulk) 1000 1.220(4) 0.308(4) 0.280

10.0 567 1.170(3) 0.216(3) 0.342

6.0 500 1.102(3) 0.221(3) 0.278

4.0 500 1.027(4) 0.222(4) 0.271

2.5 392 0.876(3) 0.255(3) 0.200

1.0 (layer) 200 0.584(3) 0.374(3) 0.167a

16.0 b 1.201 0.2082

12.0 b 1.177 0.2143

8.0 b 1.143 0.2101

4.0 b 1.015 0.2265

a Using a restricted temperature range very close to Tc, we find β = 0.127, close to the exact
two-dimensional Ising model value of 1/8 (refs4,15). b Grand canonical MC results of Singh
and Kwak10.

*



In agreement with general considerations1,2 and previous studies3,10, we
observe a significant decrease in the critical temperature with increasing
geometrical restrictions, which will be discussed below in some detail.

The results of all our critical point calculations are summarized in Table II.
We show not only the critical temperatures and densities but also the (ef-
fective) critical exponents β, obtained from Eq. (7). The critical exponent β
for the planar monolayer is of special interest. If we identify this system
with a two-dimensional square-well bulk fluid, we have to expect a value of
the critical exponent of β = 1/8, which belongs to the corresponding two-
dimensional Ising (lattice gas) model25. This can be verified by restricting
our scaling procedure to a temperature range very close to the critical point,
where, although the accuracy of our critical data calculation is limited by
large fluctuations of the coexistence densities, the effective critical expo-
nent approaches β ≈ 0.127, which is very close to the expected analytical
value of β = 1/8 (for details, see ref.4).

For comparison, we have also included in Table II critical temperature
and density results of Shing and Kwak10, which they obtained by scaling
relations from their above discussed grand canonical MC simulations. In
particular, for fluids confined to slits of width L = 4σ, the critical point data
of Shing and Kwak can be compared directly with our results for the same
slit width, showing the general agreement between our canonical results
based on particle insertion and their grand canonical based results.

As mentioned before, our data show a strong suppression of the critical
temperature with increasing confinement influence, i.e., with decreasing
wall separation distance.

The results of a more detailed analysis of the shift of the critical tempera-
ture under confinement Tc

* with respect to the bulk critical temperature Tcb
*

are presented in Fig. 3. For narrow slits, we found, in agreement with gen-
eral considerations1,2, that the difference between the critical temperature
of the bulk fluid and the confined fluid ∆Tc

* decays approximately inversely
proportional to the slit width L

∆T T T L Lc cb c
* * * / ( )≡ − ∝ ≤1 10σ . (8)

This relation is plotted as dashed line in Fig. 3. We can see that this simple
relation is not able to describe accurately the limiting case of the planar
layer and the properties of wide pores. To find a more general ∆Tc

* versus L
relation, that describes with reasonable accuracy besides narrow slits also
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planar layers and wide pores, we introduced a simple exponential decaying
function with an exponent reciprocal to a linear function in L.

∆T a bL cc
* exp [ /( )]= +1 (9)

with constants a, b, c. Figure 3 shows the result of a nonlinear regression of
all our critical temperature data for confined fluids, including monolayers
to Eq. (9), treating the constants a, b, c as adjustable parameters. Plotting
∆Tex

* versus L according to Eq. (9) and comparing it with our simulation
data, we find that the critical temperatures of all confined fluids studied –
including the planar layers – can be described by Eq. (9), within the numer-
ical uncertainties of the data. Additionally, we include in the figure the crit-
ical temperature results of the grand canonical MC simulations of Shing
and Kwak10 for fluids confined to several other slit widths, up to relatively
wide slits with L = 16σ. These data are found to follow also our ∆Tc

* (L) rela-
tion (9) with good accuracy, providing an independent check for the appli-
cability of our proposed relation even to wider slits.
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FIG. 3
Shift of the critical temperature for the square-well fluid ∆T T Tc cb c

* * *≡ − under the influence of
confinement, modeling the transition from the three-dimensional bulk fluid to a two-
dimensional monolayer via a series of hard slit-like pores with decreasing widths L. ● Results
of this work, × results of Singh and Kwak10; – – – approximation for medium and narrow slits,
Eq. (8);  Eq. (9), which describes accurately all existing critical point data



Considering the transition from the confined fluid to the bulk L → ∞,
Eq. (9) predicts an asymptotic decay, inversely proportional to L, for very
large wall separation distances L. This is slightly different from the asymp-
totic decay of L–1/ν suggested by general scaling arguments, where ν ≈ 0.63
is the critical exponent of the three-dimensional bulk fluid (for details, see
ref.26). To invstigate the exact asymptotic behaviour of the critical tempera-
ture shift of the square-well fluid by molecular simulation, one would need
to study systematically a series of confined fluids with increasing wall separa-
tions, which are sufficiently large to permit the extrapolation to the L → ∞
limit. Such a study would require an extremely high demand on computer
resources and the CPU time, and, therefore, goes beyond the scope of this
paper.

SUMMARY AND CONCLUSIONS

In this paper we have addressed the problem of the effect of geometrical
restrictions on phase equilibrium properties of three-dimensional bulk
square-well fluids. The restricting geometry is modeled to describe the tran-
sition from a three-dimensional to a two-dimensional bulk fluid by confin-
ing the fluid between two infinitely hard planar walls. An infinite large wall
separation distance corresponds to the three-dimensional free bulk fluid.
Decreasing the wall separation distance, we proceed via a series of hard slit-
like pores to a planar monolayer of square-well molecules, which is equiva-
lent to a two-dimensional bulk square-well fluid.

To study the corresponding phase equilibria, we applied to both the bulk
and confined fluids a recently proposed methodology3, which combines
MC simulations of chemical potential versus density isotherms in the sub-
critical vapour/liquid two phase range with thermodynamic integration of
these isotherms to obtain vapour/liquid coexistence densities and chemical
potentials by a Maxwell-like equal area integration.

In order to investigate the confinement influence on phase equilibrium
properties, we used both existing coexistence data estimated along these
lines in our previous papers3,4 and we simulated new sets of subcritical
chemical potential isotherms for several slit widths and calculated the cor-
responding coexistence properties.

We describe the temperature–density vapour/liquid coexistence curves by
simple scaling relations of the type of Eq. (7) and determine the corre-
sponding critical temperatures, densities, and (effective) critical exponents
by linear regression to the vapour/liquid coexistence density. In agreement
with literature data10, we found different properties of the equilibrium den-
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sities of the coexisting fluid phases under confinement. While in general
the density range of the vapour phase does not much change due to geo-
metrical restrictions, the density range of the liquid phase is significantly
lower than that of the three-dimensional bulk liquid. In this paper we ex-
tended such studies for the first time to very narrow slits and monolayers
and we found a significant increase in the liquid density with decreasing
wall separation distance. In the limiting case of the planar monolayer the
phase diagram looks qualitatively quite similar to that of the free bulk fluid.
This supports the identification of the monolayer with a two-dimensional
bulk fluid.

As expected, we observed a significant suppression of the critical temper-
ature with increasing geometrical restrictions. For medium to narrow wall
separation distances, we found the expected1,2 critical temperature shift ap-
proximately inversely proportional to the slit width.

In this work we proposed a more general expression Eq. (9), which expo-
nentially decays in terms of the reciprocal slit width. We proved that the
new equation is able to describe accurately all existing critical temperature
shift data for a wide range of wall separation distances, reaching from fluids
confined to wide slits with wall separation distance of L = 16σ to very nar-
row slits and even planar fluid monolayers (two-dimensional bulk square-
well fluids).

In general, the presented new results, describing the influence of geomet-
rical restrictions on fluid phase equilibria and critical properties, contribute
to a more detailed molecular-based understanding of phase equilibria not
only for simple square-well fluids but also for more complex molecular
fluids with square-well interactions involved.

Summarizing the results of this and our previous studies3–6, we found
the proposed combination of particle insertion MC methods with thermo-
dynamic integration to be conceptionally simple, easy to implement in ex-
isting canonical simulation codes, and capabel of providing reliable phase
equilibria data for both free bulk and confined fluids. Taking into account
the increase in efficiency of the chemical potential simulations by the use
of improved particle insertion strategies5,6,14,16, we consider the proposed
methodology to be an interesting alternative route to grand canonical or
Gibbs ensemble simulations of phase equilibrium properties of fluids.

The author thanks Dr Matthias Kettler, Leipzig, for helpful discussions.
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